dsfasdfsadf
This store has earned the following certifications.
This text provides an introduction to the fundamental mathematical tools required to comprehend the connection between knot theory and quantum gravity. Beginning with a concise course on manifolds and differential forms, the authors highlight how these concepts offer a suitable language for formulating Maxwell's equations on arbitrary spacetimes. They then introduce vector bundles, connections, and curvature in order to generalize Maxwell's theory to the Yang-Mills equations. The relation between gauge theory and the recently discovered knot invariants, such as the Jones polynomial, is briefly outlined. Riemannian geometry is then presented to describe Einstein's equations of general relativity, and the authors demonstrate how the pursuit of quantizing gravity leads to intriguing applications of knot theory.
The book commences with a rapid course on manifolds and differential forms, emphasizing how these provide a proper language for formulating Maxwell's equations on arbitrary spacetimes. The authors then proceed to introduce vector bundles, connections, and curvature in order to generalize Maxwell theory to the Yang-Mills equations. Subsequently, the relation of gauge theory to the newly discovered knot invariants, such as the Jones polynomial, is sketched. Riemannian geometry is then introduced in order to describe Einstein's equations of general relativity, and the authors show how an attempt to quantize gravity leads to interesting applications of knot theory.
This text serves as an introduction to the basic tools of mathematics needed to understand the relation between knot theory and quantum gravity. Beginning with a rapid course on manifolds and differential forms, the authors emphasize how these concepts provide a suitable language for formulating Maxwell's equations on arbitrary spacetimes. They then move on to introduce vector bundles, connections, and curvature, generalizing Maxwell's theory to the Yang-Mills equations. The connection between gauge theory and the recently discovered knot invariants, such as the Jones polynomial, is briefly outlined. Finally, Riemannian geometry is presented to describe Einstein's equations of general relativity, and the authors demonstrate how the pursuit of quantizing gravity leads to interesting applications of knot theory.
product information:
Attribute | Value | ||||
---|---|---|---|---|---|
publisher | World Scientific Publishing Company (October 1, 1994) | ||||
language | English | ||||
paperback | 480 pages | ||||
isbn_10 | 9789810220341 | ||||
isbn_13 | 978-9810220341 | ||||
item_weight | 1.17 pounds | ||||
dimensions | 6.12 x 0.96 x 8.5 inches | ||||
best_sellers_rank | #568,632 in Books (See Top 100 in Books) #210 in Mathematical Physics (Books) #1,854 in History & Philosophy of Science (Books) #5,576 in Mathematics (Books) | ||||
customer_reviews |
|